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Abstract: The B±tree is the most widely used index structure in the current commercial database 
systems. This paper introduces new B±tree algorithms in which tree-structure modifications such 
as page splits or merges are executed as atomic actions. A B±tree structure modification, once 
executed to completion will never be undone no matter if the transaction that triggered such a 
structure modification commits or aborts later on. In restart recovery from a system crash, the redo 
pass of the recovery algorithm will always produce a structurally consistent B±tree, on which 
undo operations by backward-rolling transactions can be performed. A database transaction can 
contain any number of operations of the form “fetch the first (or next) matching record”, “insert a 
record”, or “delete a record”, where database records are identified by their primary keys. 
Repeatable-read-level isolation for transactions is achieved by key-range locking. 

 
 
 
Introduction 
    
The B±tree is the most widely used index in the databases today. Each node (page) of the tree 
is a disk page (usually 4096 bytes). The leaves of the tree contain the database records. The 
leaves of the tree are all at the same level of the tree. Index pages (pages above the leaf level) 
contain only index records. The search for a single database record accesses exactly one node 
at each level of the tree. The B±tree clusters data in leaf pages in the order of the indexing 
attributes; it is therefore ideal for key-range searches. The B±tree is organized dynamically, 
and hence record inserts or deletes always leave the tree height balanced.    
 
The B±tree structure modifications such as splits of overflown pages or merges of underflown 
pages present a challenge to the concurrency control and recovery in centralized Database 
management systems. In the literature there are two techniques designed to handle structure 
modifications such as page splits or page merges. In the first technique, a transaction X-
latches the pages along the structure-modification path, and executes it before executing the 
insert/delete operation that triggered such a structure modification. In the second technique, a 
transaction acquires a tree latch before it executes a structure modification, triggered by an 
insert or a delete operation.  
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In the technique presented in [1], a transaction X-latches the pages along the structure-
modification path top-down, before it starts the execution of the structure modification 
bottom-up. Hence, two structure modifications can be executed concurrently only if they 
occur on completely distinct paths. Two structure modifications having at least one page in 
common on their paths will be serialized. X-latching the structure-modification path by an 
updating transaction T will prevent other concurrent transactions from reading or updating 
any of the pages on such a path. On the other hand, if the path were not X-latched at once by 
T, and if other transactions were allowed to update pages on the path, then T would wipe out 
updates of other transactions to these pages, when T aborts or the system fails.  
 
This technique suffers from two problems. The first one is the reduction in concurrency due to 
the X-latching of all the pages on the structure-modification path at once. The second problem 
is that, if leaf-page updates and structure modifications are allowed to execute concurrently, 
then during restart recovery the B±tree could be structurally inconsistent and thus fail to 
perform logical undo operations [2], [3].  
 
In the technique presented in [2], [3], [4], concurrent B±tree structure modifications are 
prevented through the use of a tree latch. That is, an updating transaction acquires a tree latch 
in X mode, before it starts the execution of a structure modification bottom up. Moreover, 
other transactions are prevented from performing any updating to leaf pages while the 
structure modification is still going on. This is because if transaction T1 updates a leaf page P 
and transaction T2 moves this update to another page P´ and commits while the structure 
modification is going on, then it is not possible to undo the update of transaction T1, if the 
system fails before the on-going structure modification is committed. During the undo pass of 
the restart recovery a page-oriented undo of the update by T1 would fail, and trying to undo 
the update logically would fail too, because the B±tree is not yet structurally consistent (also 
see [5]). When a transaction traversing the B±tree reaches an ambiguous situation (cannot 
decide which page to traverse next) while a structure modification is going on, then the 
traversing transaction must acquire a tree latch in S mode for short duration and retraverse the 
B±tree, so that the traversing transaction does not reach a wrong leaf page.  
 
The pages along the structure-modification path are X-latched one page at a time bottom-up. 
When a page is modified during the structure modification, then the split-bit/delete-bit in that 
page is set. Hence, when an X latch on a modified page P is released by transaction T and the 
split-bit/delete-bit of P is set and the tree latch is still held by T, then no other transaction can 
update P. Therefore, uncommitted structure modifications can always be undone 
physiologically in a page-oriented fashion. The use of a tree latch serializes the structure 
modifications and guarantees a correct recovery. 
 
This technique limits the degree of concurrency, because when a transaction T holds a tree 
latch in X mode to perform a structure modification, then new transactions will be prevented 
from accessing the B±tree, and at the same time other transactions are prevented from 
updating leaf pages. 
 
If a transaction uses S latches to latch the pages along the split/merge path, then a deadlock 
may occur when two transactions try to upgrade their S latches on a common page in the path 
to X latches at the same time [6].  
 
Traditionally, the space-utilization and balance conditions of the B±tree state that the pages 
are not allowed to fall below 50% full. When a full page P has been split, it has exactly that 
minimum space utilization. Now if a record is deleted from P, then P has to be merged back 
with its sibling page, since P fell below 50%. Also the page resulting from the merge can 
again be split after two consecutive inserts. Hence, the B±tree needlessly thrashes between 
splitting and merging the same page [7]. 
 
One approach to avoid the above problem is to allow pages to be emptied completely [1], [2] 
[4]. This issue was analyzed in [8], which concludes that page merging in a B±tree is not 
useful unless the pages are completely empty. That is, free-at-empty is much better (fewer 
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access conflicts because of structure modification operations, and therefore higher 
concurrency on the B±tree) than merge-at-half. However, the free-at-empty approach does not 
guarantee (in the worst case) the logarithmic bound for the B±tree traversal algorithm; in 
addition, it leads to low disk utilization.  
 
Our contributions are the following. We present new recoverable B±tree algorithms for 
centralized database management systems. In these algorithms, we introduce a new technique 
for handling B±tree structure modifications [9] that improves concurrency, simplifies 
recovery, avoids the problems which are associated with the merge-at-half and free-at-empty 
approaches, and reduces the amount of logging. Unlike in the algorithms in [1], [2], [3], [4], 
[10], [11], [12], we define a tree-structure modification (page split, page merge, record 
redistribution, increase-tree-height and decrease-tree-height) as a small atomic action. Each 
action affects only two levels of a B±tree. Each structure modification is logged using a single 
redo-only log record. Each successfully completed structure modification brings the B±tree 
into a structurally consistent and balanced state whenever the tree was structurally consistent 
and balanced initially. Record inserts and deletes on leaf pages of a B±tree are logged using 
physiological redo-undo log records as in [1], [2], [3], [4], [13]. Recoverability from system 
failures of both the tree structure and the logical database is guaranteed because the redo pass 
of our ARIES-based [14] recovery protocol [9] will now produce a structurally consistent and 
balanced tree, hence making possible the logical undo of record inserts and deletes. 
 
Basic concepts 
  
In a centralized database system, locks are typically used to guarantee the logical consistency 
of the database under a concurrent history of transactions, while latches are used to guarantee 
the physical consistency of a database page under a single operation. A latch is implemented 
by a low-level primitive (semaphore) that provides a cheap synchronization mechanism with 
S (shared), U (update), and X (exclusive) modes, but with no deadlock detection [1], [3], [13]. 
A latch operation typically involves fewer instructions than a lock operation, because the latch 
control information is always in virtual memory in a fixed place and directly addressable. On 
the other hand, storage for locks is dynamically managed and hence more instructions need to 
be executed to acquire and release locks and to detect deadlocks. 
 
Lock requests may be made with the conditional or the unconditional option [2], [3], [4]. A 
conditional request means that the requestor (transaction) is not willing to wait if the lock 
cannot be granted immediately. An unconditional request means that the requestor is willing 
to wait until the lock is granted. Moreover, a lock may be held for different durations. An 
instant-duration lock is used to check for any current lock conflicts and to make the requestor 
wait if such a conflict is detected. However, no actual lock is retained on the data item. A 
short-duration lock is released after the completion of an operation and before the transaction 
that performed this operation commits. A commit-duration lock is released only at the time of 
termination of the transaction, i.e., after the commit or rollback is completed. 
 
We assume that the buffer manager employs the steal and no-force buffering policy, because 
this policy does not put any restrictions on the buffer manager. It is very suitable during 
normal processing. To guarantee a correct recovery, the write-ahead-logging (WAL) protocol 
[1], [14] is applied. That is, an index or a data page with Page-LSN n my flushed onto the disk 
only after flushing first all log records with LSNs less than or equal to n. To facilitate the 
rollback of an aborted transaction, the log records of a transaction are chained via the Prev-
LSN field of log records in reverse chronological order. The important fields that may be 
present in different types of log records are:  
 
Transaction-id: The identifier of a transaction, if any, that wrote the log record.  
Type: Indicates whether the record is “begin”, “abort”, “rollback-completed”, “commit”, 
“redo-undo”, “redo-only” or “compensation”. 
Operation: Indicates the type of the update operation in the case of a redo-undo, redo-only or 
compensation log record.  
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Page-id(s): The identifier(s) of the page(s) to which updates of this log record were applied; 
present in log records of types “redo-only”, “redo-undo”, and “compensation”. 
LSN: The log sequence number of the log record (monotonically increasing value). 
Prev-LSN: The LSN of the preceding log record written by the same transaction in its 
forward-rolling phase.  
Undo-Next-LSN: This field appears only in a compensation log record generated for a 
backward-rolling aborted transaction. The Undo-Next-LSN is the LSN of the log record for 
the next update to be undone by the backward-rolling transaction.  
Data: Describes the update that was performed on the page.  
 
A redo-only log record only contains redo information while a redo-undo log record contains 
both the redo and undo information. Therefore, every redo-only log record is redoable, and 
every redo-undo log record is both redoable and undoable. However, when the update logged 
using a redo-undo log record is undone, then the undo action is logged using a compensation 
log record (CLR). The Undo-Next-LSN of the generated CLR is set to the Prev-LSN of the 
log record being undone [1], [2], [3], [4]. A compensation log record is generated as a redo-
only log record and hence an undo operation is never undone. Therefore, during the rollback 
of an aborted transaction the Undo-Next-LSN field of the most recently written CLR keeps 
track of the progress of the rollback, so that the rollback can proceed from the point where it 
left off should a crash occur during the rollback.  
 
Each B±tree page contains a Page-LSN field, which is used to store the LSN of the log record 
for the latest update on the page. The LSN concept lets us avoid attempting to redo an 
operation when the operation’s effect is already present in the page. It also lets us avoid 
attempting to undo an operation when the operation’s effect is not present in the page. The 
recovery manager uses the Page-LSN field to keep track of the page’s state.  
 
The transaction table contains an entry for each active transaction. Each entry in the 
transaction table consists of four fields: (1) the transaction-id, (2) the state of the transaction 
(forward-rolling, backward-rolling), (3) the Last-LSN field  which contains the LSN of the 
latest undoable non-CLR log record written by the transaction, and (4) the Undo-Next-LSN 
field which contains the Undo-Next-LSN of the latest CLR written by the transaction. The 
modified-page table is used to store information about modified pages in the buffer pool. 
Each entry in this table consists of two fields: the Page-id and Rec-LSN (recovery LSN). Both 
tables are updated during normal processing. When a transaction modifies a page P, then a 
new entry is created in the modified-page table, if there is no such entry for P. That is, the 
Page-id of P and the log-record address are inserted in the Page-id and Rec-LSN fields, 
respectively in the modified-page table. When a modified page is written to stable storage, 
then the corresponding entry in the modified-page table is removed. The value of Rec-LSN 
indicates from what point in the log there may be updates which possibly are not yet in the 
stable-storage version of the page. The minimum Rec-LSN value in the modified-page table 
determines the starting point for the redo pass during restart recovery. 
 
To reduce the amount of recovery work that would be requested when the system crashes, 
checkpoints [Bern87, Moha92a, Gray93] are taken periodically during normal processing. 
When a checkpoint is taken, a checkpoint log record is generated which includes copies of the 
contents of the transaction and modified-page tables. Taking a checkpoint involves no 
flushing of pages.  
 
Database and Transaction Model 
 
We assume that our database D consists of database records of the form (v, x), where v is the 
key value of the record and x is the data value (the values of other attributes) of the record. 
The key values are unique, and there is a total order, ≤, among the key values. The least 
possible key value is denoted by –∞ and the greatest possible key value is denoted by ∞. We 
assume that the database always contains the special record (∞, nil) which is never inserted or 
deleted. The database operations are as follows. 
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1) Fetch[v,θθθθu, x]: Fetch the first matching record (v, x). Given a key value u < ∞, find the 
least key value v and the associated data value x such that v satisfies vθu and the record (v, x) 
is in the database. Here θ is one of the comparison operators “≥” or “>”. To simulate the 
fetch-next operation [2], [3], [4] on a key range [u, v], the fetch operation is used as follows. 
To fetch the first record in the key range, a transaction T issues Fetch[ 1v ,≥u , 1x ]. To fetch 
the second record in the key range, T issues Fetch[ 2v ,> 1v , 2x ]. To fetch the third record in 
the key range, T issues Fetch[ 3v ,> 2v , 3x ], and so on. The fetch operation Fetch[v,θu, x] is 
said to scan the key range [u, v] (if θ is “≥”) or (u, v] (if θ is “>”).  
 
2) Insert[v, x]: Insert a new record (v, x). Given a key value v and a data value x, insert the 
record (v, x) into the database if v is not the key value of any record in the database. 
Otherwise, return with the exception “uniqueness violation”. 
 
3) Delete[v, x]: Delete the record with the key value v. Given a key value v, delete the record, 
(v, x), with key value v from the database if v appears in the database. If the database does not 
contain a record with key value v, then return with the exception “record not found”.  
  
In normal transaction processing, a database transaction can be in one of the following four 
states: forward-rolling, committed, backward-rolling, or rolled-back. A forward-rolling 
transaction is a string of the form B ,α where B denotes the begin operation and α is a string 
of fetch, insert and delete operations. A committed transaction is of the form Bα C, where 
B α is a forward-rolling transaction and C denotes the commit operation. An aborted 
transaction is one that contains the abort operation, A. A backward-rolling transaction is an 
aborted transaction of the form Bαβ A 1−β , where Bαβ  is a forward-rolling transaction and 1−β  
is the inverse of β  (defined below). The string αβ  is called the forward-rolling phase, and 
the string 1−β  the backward-rolling phase, of the transaction.  
 
The inverse 1−β  of an operation string β  is defined inductively as follows. For the empty 
operation string, ∈ , the inverse 1−∈  is defined as ∈ . The inverse ( ) 1−βο  of a non-empty 
operation string βο , where ο  is a single operation, is defined as undo-ο 1−β , where undo-ο  
denotes the inverse of operation ο . The inverses of our set of database operations are defined 
as follows. 
 
1) Undo-fetch[v, θθθθu, x] = ∈ . 
2) Undo-insert[v, x] = Delete[v, x]. 
3) Undo-delete[v, x] = Insert[v, x]. 
 
A history for a set of database transactions is a string H in the shuffle of those transactions. 
Each transaction in H can be forward-rolling, committed, backward-rolling, or rolled-back. 
Each transaction in H can contain any number of fetch, insert and delete operations. The 
shuffle of two or more strings is the set of all strings that have the given strings as 
subsequences, and contain no other element. H is a complete history if all its transactions are 
committed or rolled-back.  
 
For a forward-rolling transaction B ,α  the string A 1−α R is the completion string, and 
Bα A 1−α R the completed transaction. For a backward-rolling transaction Bαβ A 1−β , the string 

1−α R is the completion string, and Bαβ A 1−β 1−α R the completed transaction. A completion 
string γ for an incomplete history H is any string in the shuffle of the completion strings of all 
the active transactions in H; the complete history Hγ is a completed history for H.  
 
B±±±±trees 
 
We use the B±tree [10] as a sparse database index to the database, so that the leaf pages store 
the database records. In addition, we assume the B±tree is a unique index and that the key 
values are of fixed length. 
 
Formally, a B±tree is an array B[0,…,n] of disk pages B[P] indexed by unique page 
identifiers (Page-ids) P = 0,…,n. The page B[P] with Page-id P is called page P, for short. A 
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page (other than page 0) is marked as an allocated if that page is currently part of the B±tree. 
Otherwise, it is marked as unallocated. Page M=0 is assumed to contain a storage map (a bit 
vector) that indicates which pages are allocated and which are unallocated. Page 1, the root, is 
always allocated. The allocated pages form a tree rooted at 1. 
 
An allocated page is an index page or a data page. An index page P is a non-leaf page and it 
contains list of index records of the form ( )11 , Pv , ( )22 , Pv , …, ( )nn Pv ,  where 1v , 2v , …, nv  
are key values, and 1P , 2P , …, nP  are page identifiers. Each index record (child link) is 
associated exactly with one child page. The key value iv  in the index record ( )ii Pv ,  is always 
greater than or equal to the highest key value in the page iP . A data page P is a leaf page and 
contains a list of database records ( )11 , xv , ( )22 , xv , …, ( )nn xv ,  where 1v , 2v , …, nv  are the 
key values of the database records and 1x , 2x , …, nx denote the data values of the records. 
Each data page also stores its high-key record. The high-key record of a data page is of the 
form (high-key value, Page-link), where the high-key value is the highest key value that can 
appear in that data page and Page-link denotes the Page-id of the successor (right-sibling) leaf 
page. The high-key record in the last leaf page of the B±tree is (∞, nil). The set of database 
records in the data pages of a B±tree B is called the database represented by B and denoted 
by db(B). 
 
We assume that each B±tree page can hold a maximum of 1M  ≥ 8 database records 
(excluding the high-key record) and a maximum of 2M  ≥ 8 index records. Let 1m , 2 ≤ 1m < 

1M / 2, and 2m , 2 ≤ 2m < 2M / 2, be the chosen minimum load factors for a non-root leaf page 
and a non-root index page, respectively. We say that a B±tree page P is underflown if (1) P is 
a non-root leaf page and contains less than 1m  database records, or (2) P is a non-root index 
page and contains less than 2m  child links. 
 
A B±tree is structurally consistent if it satisfies the basic definition of the B±tree, so that each 
page can be accessed from the root by following child links. A structurally consistent B±tree 
can contain underflown pages. We say that a structurally consistent B±tree is balanced if none 
of its non-root pages are underflown.  
 
We say that a B±tree page P is about to underflow if (1) P is the root page and contains only 
two child links, (2) P is a non-root leaf page and contains only 1m  database records, or (3) P is 
a non-root index page and contains only 2m  child links.  
      
When searching for key value u, then in non-leaf page we follow the pointer P1, if u ≤ 1v , and 
the pointer iP , if 1−iv < u ≤ iv . An example of a B±tree is shown in Figure 1. The data values 
of the database records are not shown. 
 
 
 
 
 
 
 
 
 
 
 
 
               
            Figure 1. A B±tree that represent a database consisting of records with key values, 
            3, 5, 7, 9, 15, 18, 24, 29, 36, 48, 52.             
         
Execution of B±tree Structure Modifications as Atomic Actions 
 
To save time and efforts when a transaction aborts or the system fails, we would like the 
B±tree structure modifications made by a transaction T to be committed regardless of whether 
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15     ∞
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T will eventually commit or abort. That is, the structure modifications are executed as atomic 
actions [13], [15], and will never be undone once executed to completion. In the literature, a 
structure modification can be executed as an atomic action either by generating a special 
transaction [13], or by executing the structure modification as a nested top action [2], [3], [4].   
 
In the special-transaction approach when an updating transaction T finds that it needs to 
execute a B±tree structure modification, then a new (dummy) transaction identifier T´ and the 
log record <T´, begin> are generated. The process that generates the transaction T executes 
the structure modification, updates the involved pages, generates log records and updates the 
Page-LSNs of the pages, on behalf of T´. When T completes the structure modification, then 
the log record <T´, commit> is generated. Therefore, if T were to rollback after the structure 
modification has been completed, that is, after generating the log record <T´, commit>, then 
the log records related to the structure modification will be bypassed, since these log records 
belong to the committed transaction T´. However, if the system fails before the log record 
<T´, commit> has been generated and written to disk, then the incomplete structure 
modification would have to be undone, since T´ was not committed when the system failure 
occurred. This guarantees that the structure modification either is executed to completion or 
all its effects are undone. 
 
Nested top actions actually provide a lightweight implementation for the special transactions. 
When an updating transaction T needs to execute a B±tree structure modification, then T 
saves the LSN of the last log record it has generated, before starting the execution of the 
structure modification. Then T executes the structure modification, updates the involved 
pages, generates log records, and updates the Page-LSNs. When T completes the structure 
modification, it generates a dummy compensation log record (CLR), which is set to point to 
the log record whose LSN  was saved  previously, as shown in Figure 2. 
 
 
 
 
 
 
 
 
 
Figure 2. Part of the log showing a structure modification (triggered by an insert/delete of 
record  r) which is executed as a nested top action. 
 
Therefore, the CLR lets the transaction T, if it were to rollback after completing the structure 
modification, bypass the log records related to the B±tree structure modification. However, if 
a system failure were to occur before the dummy CLR is written to disk, then the incomplete 
structure modification will be undone. Again, the structure modification either is executed to 
completion or all of its effects are undone.  
 
In the former approach, when a structure modification is completed, neither the log record 
<T´, commit> nor the other log records related to the structure modification need be forced to 
disk. Similarly, in the latter approach, when the structure modification is completed, the 
dummy compensation log record (CLR) is not forced to disk. The two approaches are 
equivalent but are not efficient compared to our new approach.  
 
B±tree Structure-Modification Operations and Logging   
 
We introduce a new approach for handling B±tree structure modifications. In our new 
approach, a structure modification involving several levels of the tree is divided into a 
sequence of small atomic actions, each of which involves X-locking three pages on two 
adjacent levels of the tree. Each structure modification is logged using a single redo-only log 
record. Thus a completed atomic structure modification need never be undone during normal 
processing or restart recovery. A completed atomic structure modification brings the tree into 

                             {{{{ s. modification log records}}}}                            insert/delete r  
 
                                                        •  •  •      
 
                                                                    dummy CLR 
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a structurally consistent and balanced state whenever the tree was initially structurally 
consistent and balanced. To execute atomic structure modifications we present five structure 
modification operations with their algorithms given below.  
 
Split(P,Q). Given are the Page-ids of an X-latched parent page P and a U-latched child page 
Q, where P is not full and Q is full. The algorithm allocates a new page Q´, splits Q into Q 
and Q´ and links Q´ to its parent P. Upon return, the parameter Q denotes the page (Q or Q´) 
that covers the search key value. That page is kept X-latched while the latches on the other 
two pages are released. 
 
Step 1. Acquire X latches on the storage-map page M and some page Q´ marked as 
unallocated in M, and upgrade the U latch on Q to an X latch. 
 
Step 2. Mark Q´ as allocated in M and format Q´ as an empty B±tree page. 
 
Step 3. Let u´ be the current highest key value in Q, and let u be the key value that splits Q 
evenly. Move all the records with key values greater than u from Q to Q´ and keep the records 
with key values less than or equal to u in Q. 
 
Step 4. Change the index record (u´, Q) associated with child page Q in the parent P into (u, 
Q) and inserts the index record (u´, Q´) associated with new child page Q´ into the parent P. 
 
Step 5. If Q is a leaf page, then set the Page-link of Q´:= the Page-link of Q, the Page-link of 
Q:= Q´, and λ := the Page-link of Q´. Otherwise, set λ := nil. 
 
Step 6. Generate the redo-only log record <T, split, P, Q, Q´, M, u, u´, λ , V, n> where V is 
the set of records moved from Q to Q´ and n is the LSN of the previous log record generated 
by T, and update the Page-LSNs of M, P, Q and Q´. 
 
Step 7. Release the X latches on M, P and the page (Q or Q´) that does not cover the search 
key value. Set Q:= the page (Q or Q´) that covers the search key value.  ! 
 
Merge(P,Q,R). Given are the Page-ids of an X-latched parent page P and its U-latched child 
pages Q and R, where P is not about to underflow, R is the right sibling of Q, and the records 
in Q and R all fit in a single page. The algorithm merges R into Q and deallocates R. Upon 
return, Q remains X-latched while the latches on P and R are released. 
 
Step 1. Acquire an X latch on the storage-map page M, and upgrade the U latches on Q and R 
to X latches. 
 
Step 2. Move all the records from R to Q. If Q is a leaf page, then set the Page-link of Q:= the 
Page-link of R and set λ  :=  the Page-link of R. Otherwise, set λ  := nil. 
 
Step 3. Let (u, Q) and (v, R) be the index records associated with the child pages Q and R, 
respectively in the parent P. Unlink the child page R from its parent P by deleting the index 
record (v, R) from P and changing the index record (u, Q) in P into (v, Q). 
 
Step 4. Mark R as unallocated in M. 
 
Step 5. Generate the redo-only log record <T, merge, P, Q, R, M, u, v, λ , V, n> where V is 
the set of records moved from R to Q and n is the LSN of the previous log record generated 
by T, and update the Page-LSNs of M, P, Q and R. Release the X latches on M, P and R.  ! 
 
Redistribute(P,Q,R). Given are the Page-ids of an X-latched parent page P and its U-latched 
child pages Q and R, where R is the right sibling of Q, and the pages Q and R cannot be 
merged.  The algorithm redistributes the records in Q and R evenly. Upon return, the 
parameter Q denotes the page (Q or R) that covers the search key value; that page remains X-
latched while the latches on the other two pages are released. 
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Step 1. Upgrade the U latches on Q and R to X latches.  
 
Step 2. Let u be the current highest key value in Q, and let u´ be the key value in the page (Q 
or R) that redistributes the records in these pages evenly. 
 
Step 3. If u´ > u, then move all the records with key values less than or equal to u´ from R to 
Q. Otherwise, move all the records with key values greater than u´ from Q to R. 
 
Step 4. Change the index record (u, Q) associated with the child page Q in the parent P to (u´, 
Q). 
 
Step 5. Generate the redo-only log record <T, redistribute, P, Q, R, u´, V, Y, n> where V is 
the set of the records moved and Y is the page (Q or R) that received the records in V and n is 
the LSN of the previous log record generated by T, and update the Page-LSNs of P, Q and R. 
 
Step 6. Release the X latches on P and the page (Q or R) that does not cover the search key 
value, and set Q:= the page (Q or R) that covers the search key value.  ! 
 
Increase-tree-height(P). Given is the Page-id of the X-latched full root page P. The algorithm 
allocates two pages P´ and P´´, distributes the records in P evenly between P´ and P´´ and 
makes P´ and P´´ children of P. Upon return, the parameter P denotes the page (P´ or P´´) that 
covers the search key value. That page is kept X-latched, while the latches on the other two 
pages are released. 
 
Step 1. Acquire X latches on the storage-map page M and some pages P´ and P´´ marked as 
unallocated in M.  
 
Step 2. Mark P´ and P´´ as allocated in M, and format P´ and P´´ as empty B±tree pages. 
 
Step 3. Determine the key value u that splits P evenly, move all the records with key values 
greater than u from P to P´´, and move all the remaining records from P to P´. 
 
Step 4. Let u and ∞ be the high-key values of P´ and P´´, respectively, and insert the index 
records (u, P´) and (∞, P´´) into P. 
 
Step 5. Generate the redo-only log record <T, increase-tree-height, P, P´, P´´, M, u, ∞, V1, 
V2, n> where V1 is the set of records that moved from P to P´ and V2 is the set of records 
that moved from P to P´´, and n is the LSN of the previous log record generated by T, and 
update the Page-LSNs of M, P, P´, and P´´.  
 
Step 6. Release the X latches on M, P and the page (P´ or P´´) that does not cover the search 
key value, and set P:= the page (P´ or P´´) that covers the search key value.  ! 
 
Decrease-tree-height(P,Q,R). Given are the Page-ids of the X-latched root page P and its U-
latched child pages Q and R, where Q and R are the only children of P and can be merged. 
The algorithm moves the records in Q and R to P and deallocates Q and R. Upon return, P 
remains X-latched while the latches on the other two pages are released. 
 
Step 1. Acquire an X latch on the storage-map page M, and upgrade the U latches on Q and R 
to X latches.  
 
Step 2. Delete the only two remaining index records (u, Q) and (∞, R) associated with the 
child pages Q and R from the parent page P. 
 
Step 3. Move all the records from Q and R to P. Mark Q and R as unallocated in M. 
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Step 4. Generate the redo-only log record <T, decrease-tree-height, P, Q, R, M, u, ∞, V1, V2, 
n> where V1 is the set of records moved from Q to P, V2 is the set of records moved from R 
to P and n is the LSN of the previous log record generated by T, and update the Page-LSNs of 
M, P, Q and R. 
 
Step 5. Release the X latches on M, Q and R.  ! 
 
Lemma 1. Let B be a structurally consistent and balanced B±tree. Then any of the structure-
modification operations split(P,Q), merge(P,Q,R), redistribute(P,Q,R), increase-tree-height(P) 
and decrease-tree-height(P,Q,R), whenever the preconditions for the operation hold, produces 
a structurally consistent and balanced B±tree when run on B by some transaction T.  
 
Proof. From the algorithms for the operations, it is evident that if the preconditions for the 
operation are satisfied, then the operation can be run on B and preserves the structural 
consistency and balance of B. The preconditions for split(P,Q) state that Q is full and its 
parent P is not full. In Split(P,Q), Q is split into Q and the allocated page Q´, and Q´ is made 
as a child of P. Thus the resulting B±tree is structural consistent and balanced. The 
preconditions for merge(P,Q,R) and redistribute(P,Q,R) state that R is a right sibling of  Q 
and their parent P is not about to underflow. In merge(P,Q,R), R is merged into Q and R 
unlinked from its parent P, while in redistribute(P,Q,R), the records in Q and R are 
redistributed evenly, and hence the resulting B±tree in either case is structurally consistent 
and balanced. The preconditions for increase-tree-height(P) state that P is the root of the tree 
and full. The operation distributes the records in P evenly between the allocated pages P´ and 
P´´ and makes P´ and P´´ as children of P. Thus the resulting B±tree is structurally consistent 
and balanced. The preconditions for decrease-tree-height(P,Q,R) state that Q and R are the 
only children of P, R is an about-to-underflow right sibling of Q, and the records in both 
pages Q and R can fit in one page. The operation replaces the contents of P by the contents of 
Q and R, and hence the resulting B±tree is structurally consistent and balanced. Concurrent 
B±tree structure-modification operations performed by transactions preserve the structural 
consistency of the tree, because the tree pages involved in each operation are kept X-latched 
for the duration of the operation.  !  
 
The following algorithm is used by a transactions T to execute a B±tree structure modification 
(page split) involving several levels of the tree as a sequence of small atomic actions.  
 
Algorithm 1. Split the full pages on the split path starting from the highest non-full page 
down to the target leaf page P when these pages are U-latched by T. 
 
Step 1. Let P:= the Page-id of the highest U-latched page on the split path.  
 
Step 2. Upgrade the U latch on P to an X latch.  
 
Step 3. If P is the root of the B±tree and P is full, then increase-tree-height(P). 
 
Step 4. If P is a leaf page, then return. 
 
Step 5. Determine the U-latched full child page Q of P that is on the split path. 
 
Step 6. Split(P,Q), set P := Q, and go to Step 4.  ! 
 
The following algorithm is used by a transactions T to execute a B±tree structure modification 
(page merge/redistribute) involving several levels of the tree as a sequence of small atomic 
actions.  
 
Algorithm 2. Merge or redistribute the pages along the merge (or redistribute) path which are 
about to underflow with their sibling pages when these pages are U-latched by T. 
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Step 1. Let P be the Page-id of the highest U-latched not-about-to-underflow page on the 
merge (or redistribute) path.  
 
Step 2. Upgrade the U latch on P to an X latch.  
 
Step 3. Determine the U-latched child page Q of P that is about to underflow and is on the 
merge (or redistribute) path. 
 
Step 4. If Q is the rightmost child of its parent P, then go to Step 8. 
 
Step 5. Determine the right sibling page R of Q and U-latch R. 
 
Step 6. If P is the root of the B±tree and P has just two child pages Q and R which can be 
merged, then decrease-tree-height(P,Q,R) and go to Step 12. 
 
Step 7. If  Q and R can be merged, then merge(P,Q,R) else redistribute(P,Q,R). Set P:=  Q and 
go to Step 12. 
 
Step 8. Now Q is the rightmost child of its parent P. Determine the left sibling page L of Q. 
 
Step 9. Release the U latch on Q (to avoid a deadlock), and U-latch L and Q (in this order).  
 
Step 10. If P is the root of the B±tree and P has just two child pages L and Q which can be 
merged, then decrease-tree-height(P,L,Q) and go to Step 12. 
 
Step 11. If L and Q can be merged, then merge(P,L,Q) else redistribute(P,L,Q). Set  P:= L. 
 
Step 12. If P is a leaf page, then return. Otherwise, go to Step 3.  !  
 
Lemma 2.  Let B be a structurally consistent and balanced B±tree of height h. Assume that a 
transaction T performs tree-structure modifications on B using Algorithm 1 or 2. Then T 
accesses 2h+1 pages at most, keeps at most h pages U-latched and three pages X-latched at a 
time, and accesses and X-latches the storage-map page M at most h times.  
 
Proof. It is clear from the algorithms of the structure-modification operations that each 
operation acquires three X latches on the pages involved in the operation. Hence, when 
transaction T performs tree-structure modifications using Algorithm 1 or 2, T X-latches three 
pages at a time, two of which are on the same level. Thus in the worst case, Algorithm 1 or 2 
accesses and modifies 2h+1 pages. The rest of the pages on the structure-modification path 
are kept U-latched. The storage-map page is accessed when a new page needs to be allocated 
in the operations split(P,Q) and increase-tree-height(P) and when a page needs to be 
deallocated in the operations merge(P,Q,R) and decrease-tree-height(P,Q,R). Hence in the 
worst case, the storage-map page M may be accessed h times.  !  
 
Concurrency Control 
 
We use the latch-coupling protocol [1], [2], [3], [4] for page-level concurrency control on 
index pages. For concurrency control on leaf pages we use the key-range locking protocol. 
Thus, different transactions can fetch, insert or delete database records from leaf pages 
concurrently. The latch-coupling protocol is assumed to be deadlock-free. This is guaranteed 
if an S latch is never upgraded to an X latch. We assume that a transaction T fixes an index or 
data page P in the buffer pool before it latches P and unfixes P after unlatching P. 
 
A fetch operation by a transaction T in a history H is an unrepeatable read if some other 
transaction T´ updates (inserts or deletes) a record whose key belongs to the key range read by 
the fetch operation, before T commits or completes its rollback. To avoid unrepeatable reads, 
we use the key-range locking protocol [1], [2], [3], [4]. 
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In the key-range locking protocol, transactions acquire in their forward-rolling phase commit-
duration X locks on inserted records and on the next records of deleted records, short-duration 
X locks on deleted records and on the next records of inserted records, and commit-duration S 
locks on fetched records. Short-duration locks are held only for the time the operation is being 
performed. Commit-duration X locks are released after the transaction has committed or 
completed its rollback. Commit-duration S locks can be released after the transaction has 
committed or aborted.  
 
No additional record locks are acquired for operations done in the backward-rolling phase of 
an aborted transaction. To undo an insertion of record r, an aborted transaction T just deletes r 
under the protection of the X lock acquired during the forward-rolling phase on r. To undo a 
deletion of record r, T just inserts r under the protection of the X lock acquired during the 
forward-rolling phase on the next record r´. 
         
There is one troublesome point in using the key-range locking protocol. Namely, if a 
transaction must wait for a lock on the next record r´, then when the lock is granted, the 
record r´ may no longer be the right record to lock. This is because another transaction may 
have deleted r´ or inserted a new record just before r´. Therefore, if a transaction T waits for a 
lock on the next record, then T must revalidate the next record when the lock is granted. If the 
next record has changed during the lock wait due to a page update, then T should release the 
lock on the old next record and request a lock on the current next record. 
 
B±tree Traversals, Fetch, Insert and Delete   
 
A transaction T takes as input a key value k and traverses the B±tree, using the latch-coupling 
protocol with S latches (Algorithm 3). When the leaf page P covering the search key value k 
is reached, then P is S-latched for fetching and X-latched for updating.  
 
Algorithm 3. B±tree traversal using latch coupling with S latches. 
 
Step 1. Set P:= the Page-id of the root page of the B±tree and S-latch P.  
 
Step 2. If P is a leaf page, then go to Step 5. 
 
Step 3. Search P for the child page Q and S-latch Q.   
 
Step 4. Release the S latch on P, set P:= Q, and go to Step 2. 
 
Step 5. Now P is the leaf page that covers k. If P is needed for updating, then X-latch P.  ! 
 
When an updating T traversing the B±tree reaches a full leaf page P (when inserting) or an 
about-to-underflow leaf page P (when deleting), T releases its X latch on P (to avoid a 
deadlock with another transaction traversing the tree). Then T retraverses the B±tree, using 
Algorithm 4 which results in U-latching the reached leaf page P and its ancestors up to the 
first non-full (not-about-to-underflow) page. 
 
Algorithm 4. B±tree traversal using latch coupling with U latches for updating. 
 
Step 1. Set P:= the Page-id of the root page of the B±tree, and U-latch P. 
 
Step 2. If P is a leaf page, then return. 
 
Step 3. Search P for the child page Q covering the search key value k, and U-latch Q.  
 
Step 4. If the child page Q is full (when inserting) or about to underflow (when deleting), then 
save the Page-id of P, set P:= Q, and go to Step 2. 
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Step 5. If the child page Q is not-full (resp. not-about-to-underflow) and some ancestors of Q 
(whose Page-ids were saved previously) are still U-latched, then release the U latches on the 
ancestors of Q. 
 
Step 6. Release the U latch on page P, set P:= Q, and go to Step 2.  ! 
 
Lemma 3. Let B be a structurally consistent and balanced B±tree. Then the read-mode 
traversal (Algorithm 3), the update-mode traversal (Algorithm 4) and the tree-structure-
modifications (Algorithms 1 and 2) are deadlock-free.  
 
Proof. The read-mode traversal (Algorithm 3) and the update-mode traversal (Algorithm 4) 
employ the lock-coupling protocol and acquire page locks in a top-down order. In the 
Algorithms 1 and 2, the U locks on the pages involved in the tree structure modifications are 
acquired in a top-down, left-to-right order. When an about-to-underflow page Q is the 
rightmost child of its parent P, the U lock on Q is released and U locks are acquired on the 
pages L (the left sibling of Q) and Q (see Steps 8 and 9 of Algorithm 2). Again in Algorithms 
1 and 2, only U locks are upgraded to X locks. Therefore, we may conclude that our read-
mode-traversal, update-mode traversal and tree structure modification algorithms are 
deadlock-free.  ! 
 
The following algorithm implements the operation Fetch[k,θu, x]. 
 
Algorithm 5. Given a key value u<∞, fetch the data record r = (k, x) with the least key value k 
satisfying kθu. As a result of a previous call to this algorithm, the Page-id P of the page where 
the previously fetched record resided may also be given as input.    
 
Step 1. If P is not given as input, then go to Step 5. Otherwise, S-latch P. 
 
Step 2. Find the lowest key value w, the highest key value v and the high-key value v´ in P.  
 
Step 3. If u < w or u > v´, then go to Step 5.  
 
Step 4. If u > v or u = v and θ = ”>”, then go to Step 6. Otherwise go to Step 7. 
 
Step 5. Traverse the B±tree from the root using latch coupling with S latches (Algorithm 3) 
with u as the input key value. Search the reached target leaf page P, determine the highest key 
value v and the high-key value v´ in P, set Q:= nil, and go to Step 4. 
 
Step 6.  The record to be fetched resides in P´, the page next to P. S-latch P´, set Q:= P and 
P:= P´, and save the Page-LSN of Q.  
 
Step 7. Now P contains the record to be fetched. Determine the record r in P with the least key 
value k satisfying kθu. Request a conditional S lock on r. If the lock is granted right away, 
then S-lock r, release the S latch on P, save the Page-id P, and return with r. 
 
Step 8. If r is the lowest record in P and Q ≠ nil, then go to Step 13.  
 
Step 9. Save the Page-LSN of P and release the S latch on P. Request unconditional S lock on 
r. When the lock is granted, S-latch P and search P for r. 
 
Step 10. If the Page-LSN of P has not changed, then save the Page-id P, release the S latch on 
P, and return with r. 
 
Step 11. If P does not cover r or P is not a leaf page or P is not part of the B±tree any more, 
then release the S latch on P, release the X lock on r, and go to Step 5. 
 



www.manaraa.com

Step 12. If r is present in P and the key value k of r is still the least key value in P satisfying 
kθu, then release the S latch on P, save the Page-id P, and return with r. Otherwise, release the 
S lock on r, determine the highest key value v in P, and go to Step 4. 
 
Step 13. The record r to be fetched is the lowest record in P, and r was found by entering P 
from its left sibling Q. Save the Page-LSN of P and release the S latch on P. Request 
unconditional S lock on r. When the lock is granted, S-latch P and Q, and search P for r.  
 
Step 14. If the Page-LSN of Q has not changed, then release S latch on Q and go to Step 10. 
 
Step 15. If Q does not cover the key value u or Q is not a leaf page or Q is not part of the 
B±tree any more, then release S latches on P and Q, release the X lock on r, and go to Step 5. 
 
Step 16. The Page-LSN of Q has changed but Q still covers u. Determine the highest key 
value v in Q.  
 
Step 17. If u = v and θ = “≥”, then release the S latches on P and Q, set P:= Q, save the Page-
id P, and return with r.  
 
Step 18. If u = v and θ = “>”, then release the S latch on Q and go to Step 10. 
 
Step 19. Now u < v in the page Q. Release the S latch on P, release the S lock on r, set P:= Q, 
and go to Step 7.  ! 
 
The next algorithm implements the operation Insert[k, x] in the forward-rolling phase of T.  
 
Algorithm 6. Given a record r = (k, x) with key value k, insert r into the database. 
 
Step 1. Traverse the B±tree using latch coupling with S latches (Algorithm 3) to reach the leaf 
page P that covers the key value k of record r.  
 
Step 2. If  the X-latched leaf page P is full, then go to Step 8. 
 
Step 3. Determine the page P´ that holds the record r´ with the least key value greater than the 
key value k of r and X-latch P´. Thus P´ is P (when r´ is found in P) or the page next to P 
(otherwise).  
 
Step 4. Lock-records(P,r,P´,r´). If the exception “records cannot be X-locked” is returned, 
then go to Step 1. 
 
Step 5. Search P for the position of insertion of r. If a key value that matches the key value k 
of r is found, then terminate the insert operation, and return with the exception “uniqueness 
violation”.  
 
Step 6. Insert r into P, generate the redo-undo log record <T, insert, P, r, n> where n is the 
LSN of the previous log record generated by T, and update the Page-LSN of P. 
 
Step 7. Release the X latches on P and P´, release the X lock on r´, and hold the X lock on r 
for commit duration and return. 
 
Step 8. Release the X latch on P (to avoid a deadlock with another transaction traversing the 
B±tree) and retraverse the B±tree from the root page, using latch coupling with U latches 
(Algorithm 4), and set P:= Q (the reached leaf page). 
 
Step 9. If P is full, then perform the needed page splits using Algorithm 1, and go to Step 3. 
Otherwise, upgrade the U latch on P to an X latch and go to Step 3. ! 
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The following algorithm implements the operation Delete[k, x] in the forward-rolling phase 
of a transaction T. 
 
Algorithm 7. Given a key value k, delete the record r = (k, x) with key value k from the 
database. 
 
Step 1. Traverse the B±tree using latch coupling with S latches (Algorithm 3) to reach the leaf 
page P that covers the key value k of record r.  
 
Step 2. If  P is about to underflow, then go to Step 8.  
 
Step 3. Determine the page P´ that holds the record r´ with the least key value greater than the 
key value of r and X-latch P´. Thus P´ is P (when r´ is found in P) or the page next to P 
(otherwise).  
 
Step 4. Lock-records(P,r,P´,r´). If the exception “records cannot be X-locked” is returned, 
then go to Step 1. 
 
Step 5. Search P for a record with key value k. If no record with key value k was found in P, 
then terminate the delete operation, and return with the exception “record not found”. 
 
Step 6. Delete r from P, generate the redo-undo log record <T, delete, P, r, n> where n is the 
LSN of the previous log record generated by T, and update the Page-LSN of P. 
 
Step 7. Release the X latches on P and P´, release the X lock on r, and hold the X lock on r´ 
for commit duration and return. 
 
Step 8. Release the X latch on P (to avoid a deadlock with another transaction traversing the 
B±tree) and retraverse the B±tree from the root page, using latch coupling with U latches 
(Algorithm 4), and set P:= Q (the reached leaf page). 
 
Step 9. If P is about to underflow, then perform the needed page merge/redistribute using 
Algorithm 2, and go to Step 3.  Otherwise, upgrade the U latch on P to an X latch and go to 
Step 3. ! 
  
The following algorithm is used by an updating transaction to acquire X locks on the record r 
and the record r´ next to r when inserting or deleting r.  
                                         
Lock-records(P,r,P´,r´): Given are the Page-id P of an X-latched leaf page P covering record 
r and the Page-id P´ of an X-latched leaf page P´ containing the record r´ next to r. The 
algorithm acquires X locks on r and r´ if possible. Otherwise, it releases the X latches on P 
and P´ and returns with the exception “records cannot be X-locked”.  
 
Step 1. Request conditional X locks on the records r and r´.   
 
Step 2. If the locks are granted right away, then return.  
 
Step 3. Save the Page-LSNs of P and P´. Release the X latches on P and P´, and request 
unconditional X locks on r and r´. When the record locks are granted, X-latch P and P´.  
 
Step 4. If the Page-LSNs of P and P´ have not changed, then return. 
 
Step 5. If the Page-LSN of P has changed and either P does not cover r or P is not a leaf page 
or P is not part of the B±tree any more, then go to Step 12. 
 
Step 6. Now P still covers r. Search P for a record r´´ with the least key value greater than the 
key value of r. If no such record is found in P, then go to Step 10.  
 



www.manaraa.com

Step 7. Now P contains r´´. If P = P´, then go to Step 8. Otherwise go to Step 9. 
 
Step 8. If the key values of r´´ and r´ are equal, then return. Otherwise, release the X locks on 
r and r´ in P, set r´:=r´´, and go to Step 1.  
 
Step 9. Release the X latch on P´ and  release the X locks on  r and  r´, set P´:= P and r´:= r´´, 
and go to Step 1. 
 
Step 10. If P= P´, then go to Step 12. Otherwise, determine the page P´´ currently next to P.  
 
Step 11. If P´´= P´ and the key value of r´ is equal to the key value of the first record in P´, 
then return. 
 
Step 12. Release the X latches on P and P´, release the X locks on r and r´, and return with the 
exception “records cannot be X-locked”.  !  
 
Page-Oriented Redo, Page-Oriented Undo and Logical Undo  
 
Page-oriented redo means that, when a page update needs to be redone at recovery time, the 
Page-id field of the log record is used to determine uniquely the affected page. That is, no 
other page needs to be accessed or examined. Similarly, page-oriented undo means that, when 
page update needs to be undone during transaction rollback, the Page-id field of the log record 
is used to determine the affected page. The same page is accessed and the update is undone on 
that page. Page-oriented redo and page-oriented undo provide faster recovery, because only 
the pages mentioned in the log record are accessed.  
 
The operations in the backward-rolling phase of an aborted transaction are implemented by 
the algorithms below. The algorithms are used during normal processing to roll back a 
transaction as well as during the undo pass of restart recovery to roll back all active 
transactions. An undo operation in the backward-rolling phase of an aborted transaction T is 
logged by writing a compensation log record (CLR) [14] that contains, besides the arguments 
needed to replay the undo operation, the LSN of the log record for the next database operation 
by T to be undone. Such a compensation log record is a redo-only log record.  
 
Uncommitted updates by a transaction T may move to a different leaf page due to structure 
modifications triggered by other concurrent transactions. Thus, during recovery time a page-
oriented undo can fail, because an update to be undone may no longer be covered by the page 
mentioned in the log record. When a page-oriented undo fails, a logical undo [2], [3] is used: 
the backward-rolling transaction retraverses the B±tree from the root page down to the leaf 
page that currently covers the update to be undone, and then that update is undone on that 
page. Naturally, the undo of such an update may trigger a tree-structure modification, which 
is executed and logged using redo-only log records. Logical undo provides a higher level of 
concurrency than would be possible if the system only allowed for page-oriented undo. 
 
The following algorithm implements the inverse operation Undo-delete[k, x] in the backward-
rolling phase of an aborted transaction T. 
 
Algorithm 8. Undo the deletion of record r = (k, x). Given is a redo-undo log record <T, 
delete, P, r, n> where r is a record with key value k that was deleted by T from page P, and n 
is the LSN of the previous log record generated by T in its forward-rolling phase. The 
algorithm reinserts r into P if P still covers k. Otherwise, T retraverses the B±tree to reach the 
covering leaf page Q and inserts r into Q. 
 
Step 1. X-latch P. If P still covers k and there is a room for r in P, then go to Step 4. 
 
Step 2. Undo the deletion of r logically. Release the X latch on P, retraverse the B±tree from 
the root page using Algorithm 4 with k as an input key value to reach the covering leaf page 
Q, and set P:= Q. 
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Step 3. If P is full, then perform the needed page splits using Algorithm 1. Otherwise, upgrade 
the U latch on P to an X latch. 
 
Step 4. Insert r into P, generate the compensation log record <T, undo-delete, P, r, n>, update 
the Page-LSN of P, and release the X latch on P.  ! 
 
The following algorithm implements the inverse operation Undo-insert[k, x] in the backward-
rolling phase of an aborted transaction T. 
 
Algorithm 9. Undo the insertion of record r. Given is a redo-undo log record <T, insert, P, r, 
n> where r is a record with key value k that was inserted by T into page P, and n is the LSN of 
the previous log record generated by T in its forward-rolling phase. The algorithm deletes r 
from P if P still contains r. Otherwise, T retraverses the B±tree to reach the covering leaf page 
Q and deletes r from Q. 
 
Step 1. X-latch P. If P still contains r and will not underflow if r is deleted, then go to Step 4. 
 
Step 2. Undo the insertion of r logically. Release the X latch on P, retraverse the B±tree from 
the root page using Algorithm 4 with k as an input key value to reach the covering leaf page 
Q, and set P:= Q. 
 
Step 3. If P is about to underflow, then perform the needed page merging (or record 
redistribution) using Algorithm 2. Otherwise, upgrade the U latch on P to an X latch. 
 
Step 4. Delete r from P, generate the compensation log record <T, undo-insert, P, r, n>, update 
the Page-LSN of P, and release the X latch on P.  ! 
 
Lemma 4. Let T be a transaction and B a structurally consistent B±tree of height h. Any 
operation Fetch[k,θu, x] by T on B accesses at most h+1 pages of B and keeps at most two of 
those pages S-latched for T at a time. Any operation Insert[k, x] or Delete[k, x] in the 
forward-rolling phase of T and any logically implemented inverse operation Undo-delete[k, x] 
or Undo-insert[k, x] in the backward-rolling phase of T accesses at most 2h+1 pages of B, 
keeps at most three of those pages X-latched T at a time, and produces a structurally 
consistent and balanced B±tree. Any physiologically implemented inverse operation Undo-
delete[k, x] or Undo-insert[k, x] in the backward-rolling phase of T accesses at most one page 
of B, and produces a structurally consistent and balanced B±tree. 
  
Proof. From Algorithms 3 and 5, it follows that Fetch[k,θu, x] accesses h pages to reach leaf-
page level while keeping two pages S-latched at a time. When a leaf page is reached, an extra 
page access may be needed to locate the least key value k satisfying kθu. The claims for 
Insert[k, x], Delete[k, x], Undo-delete[k, x] and Undo-insert[k, x] follow from Lemma 2 and 
Algorithms 6, 7, 8 and 9. A physiological Undo-delete[k, x] always checks that the page has 
room for (k, x), and a physiological Undo-insert[k, x] always checks that the page will not 
underflow from the deletion of (k, x).  ! 
 
Transaction Abort and Rollback  
 
A transaction T is rolled back during normal processing when T performs the “abort” 
operation or T gets involved in a deadlock or the flushing process of the log records of T is 
not completed successfully. During the rollback, the log records are undone in the reverse 
chronological order, and for each log record that is undone, a compensation log record (CLR) 
is generated. When a redo-only log record is encountered, the Prev-LSN of such log record is 
used to determine the next log record to be undone. If any structure modifications are 
executed during transaction rollback, then such structure modifications are logged using redo-
only log records. Moreover, no B±tree structure modifications are undone during transaction 
rollback. The backward-rolling phase A 1−α R of an aborted transaction T = Bα A 1−α R is 
executed by the following algorithm. 
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Algorithm 10. Rollback an aborted transaction T. 
 
Step 1. Generate the log record <T, abort, n> where n is the LSN of the last log record 
generated by T during its forward-rolling phase (n is obtained from the transaction table). 
 
Step 2. Get the log record generated by T with LSN equal to n. 
 
Step 3. If the log record is <T, begin>, then go to Step 7.  
 
Step 4. If the log record is a redo-only log record of type “split” or “merge” or redistribute” or 
“increase-tree-height” or “decrease-tree-height”, then use the Prev-LSN of  this log  record  to 
determine  the  next log  record  to  be undone, and  go to Step 3.  
 
Step 5. If the log record is a redo-undo log record of type “delete” or “insert”, then undo the 
logged update, using Algorithm 8 or 9, respectively. 
 
Step 6. Get the next log record to be undone using the Prev-LSN of the log record being 
undone, and go to Step 3. 
 
Step 7. Generate the log record <T, rollback-completed> and release all locks of T.  ! 
 
Transaction Execution  
 
In the forward-rolling phase of transaction T, the operations fetch, insert and delete are 
implemented by the algorithms 5, 6 and 7, respectively, while the operations begin and 
commit are implemented by the following algorithms. 
 
Begin transaction: Get a new transaction identifier T, and generate the log record <T, begin>.  ! 
 
Commit transaction T: Generate the log record <T, commit>, flush the log, and release all 
locks held by T.  ! 
 
In the backward-rolling phase of transaction T, the operations Undo-delete[k, x] and Undo-
insert[k, x] are executed by the algorithms 8 and 9, while the operations abort and rollback-
completed are executed by the following algorithms.  
 
Abort transaction T: Generate the log record <T, abort, n> where n is the LSN of the previous 
log record generated by T in its forward-rolling phase. ! 
 
Rollback-completed: Generate the log record <T, rollback-completed>, flush the log, and 
release all locks held by T.  ! 
 
Theorem 5. Assume that each transaction in its forward-rolling phase accesses records in 
ascending key order and that the operations Fetch, Insert, Delete, Undo-delete and Undo-
insert are implemented by Algorithms 5, 6, 7, 8 and 9. Then no deadlocks can occur. 
 
Proof. The operations use the same read-mode and update-mode traversal algorithms 3 and 4. 
Thus we conclude by Lemma 3 that no deadlock can occur between page latches. No 
deadlocks can occur between record locks either, because the execution of single Fetch, 
Insert, Delete, Undo-delete and Undo-insert operations by Algorithms 5, 6, 7, 8 and 9 is 
deadlock-free. Note that S locks on records are never upgraded and that the Fetch operation 
locks only one record, the operations Insert and Delete lock two records in ascending key 
order, and the operations Undo-delete and Undo-insert acquire no new record locks at all. For 
transactions containing multiple operations in their forward-rolling phase, the assumption of 
accessing records in ascending key order is needed to avoid deadlocks that may occur when 
transactions lock two or more records in a different order. Finally, no deadlock can be caused 



www.manaraa.com

by the interaction of record locks and page latches, because no transaction is made to wait for 
a lock on a record covered by page P while holding a latch.  ! 
 
Let H be a history of forward-rolling, committed, backward-rolling and rolled-back 
transactions that can be run on database D1 and let B1 be a structurally consistent and 
balanced B±tree with db(B1) = D1. Let H´ be a string of B±tree operations containing begin, 
commit, abort, rollback-completed, traversal, structure-modification, fetch, insert and delete 
operations that can be run on B1. We say that H´ is an implementation of H on B1, if the 
subsequence of begin, commit, abort, rollback-completed, fetch, insert and delete operations 
included in H´ is equal to H. 
  
 Theorem 6. Let H be a history of forward-rolling, committed, backward-rolling and rolled-
back transactions that can be run on database D. Further let B be a structurally consistent and 
balanced B±tree with db(B) = D, and let H´ be an implementation of H on B using the above 
algorithms. Then H´ produces a structurally consistent and balanced B±tree.  
 
Proof. A formal proof would use induction on the number of operations in H´. For the 
purposes of the proof we may regard each of the structure-modification operations split(P,Q), 
merge(P,Q,R), redistribute(P,Q,R), increase-tree-height(P) and decrease-tree-height(P,Q,R) as 
an atomic operation. Also the insertion of a record (k, x) into a leaf page P, and the deletion of 
a record from leaf page P are atomic operations. This is justified because structure 
modifications and leaf page updates are performed under the protection of X latches. The 
structural consistency and balance of the tree produced by H´ follows from Lemmas 1 and 4.  ! 
 
Theorem 7. Let H be a history of forward-rolling, committed, backward-rolling and rolled-
back transactions that can be run on database D under the key-range locking protocol. Further 
let B be a structurally consistent and balanced B±tree with db(B) = D. Then there exists a 
B±tree operation string H´ that implements H on B using the above algorithms. Moreover, 
each operation implementation in H´ includes at most one traversal of B.  
 
Proof. In one such H´, the implementations of individual operations Fetch[k,θu, x], Insert[k, 
x], Delete[k, x], Undo-insert [k, x], and Undo-delete[k, x] by different transactions are run 
serially, so that the implementations of different operations are not interleaved. In the worst 
case, each operation is implemented logically in H´ and includes a single traversal of the tree 
from the root down to the covering leaf page. No latch conflicts can occur during the 
traversals at any level of the tree, because an X latch on a page is only held for the time of the 
update operation in question and because any S latch on a leaf page held for longer duration 
can be released immediately after the Fetch operation is done. As H can be run on D under the 
key-range locking protocol, no lock conflicts can occur with the record locks either.  !  
    
Restart Recovery   
 
The goal of recovery is to ensure that the B±tree only reflects the updates of committed 
transactions and none of those of uncommitted transactions. We use a redo and undo recovery 
protocol for handling the system failures. Our recovery protocol is based on ARIES [14], 
which support the steal and no-force policies for buffer management and fine-grained 
concurrency control. We assume that no new transactions are accepted to the system during 
restart recovery until the execution of the recovery protocol is completed. The restart recovery 
protocol consists of three passes: an analysis pass, a redo pass, and an undo pass. 
 
In the analysis pass, the log is scanned forward starting from the start-checkpoint log record 
of the last complete checkpoint, up to the end of the log. A modified-page list of pages that 
were potentially more up-to-date in the buffer than in stable storage and an active-transaction 
list of transactions that were in progress (i.e., forward-rolling or backward-rolling) at the time 
of the crash are constructed, using the information in the checkpoint log record and the 
encountered log records. The analysis pass also determines the Redo-LSN, i.e., the LSN of the 
earliest log record that needs to be redone. The Redo-LSN is the minimum Rec-LSN (recovery 
LSN) in the created modified-page list. In other words, the analysis pass determines the 
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starting point of the redo pass in the log, and the list of the transactions that need to be rolled 
back or whose rollback need to be completed. 
 
The redo pass begins at the log record whose LSN equals to Redo-LSN, and then proceeds 
forward to the end of the log. For each redoable log record of the type “update” or 
“compensation”, the following is performed. If the page mentioned in the log record is not in 
the modified-page list, then the logged update does not require redo. If the page mentioned in 
the log record is in the modified-page list and its Rec-LSN is greater than the log record’s 
LSN, then the logged update does not require redo. Otherwise, the page mentioned in the log 
record is accessed and its Page-LSN is compared with the log record’s LSN, in order to check 
whether or not the page already contains the update, that is, whether or not updated page was 
written to the disk before the system failure. If the Page-LSN is less than the log record’s 
LSN, then the logged update is redone, that is, applied physiologically to the page and the 
Page-LSN is set to the log record’s LSN. Otherwise, the logged update does not require redo. 
No logging is performed during the redo pass. By the end of the redo pass, the B±tree will 
become structurally consistent.  
 
In the undo pass, all forward-rolling transactions are aborted and rolled back and the rollback 
of all backward-rolling transactions is completed. The log is scanned backward from the end 
of the log until all updates of such transactions are undone. When a log record of type 
“compensation” (CLR) is encountered, then no action is performed except that the value of 
the Undo-Next-LSN field of such a CLR is used to determine the next log record to be 
processed. When a redo-only log record of type “split” or “merge” or “redistribute” or 
“increase-tree-height” or “decrease-tree-height” is encountered, then no action is performed 
except that the value of the Prev-LSN of such log record is used to determine the next log 
record to be processed. When a redo-undo log record of type “delete” or “insert” is 
encountered, then the logged update is undone, using Algorithm 8 or 9, respectively, except 
that no X latch is acquired on the affected page.  
 
To undo all uncommitted transaction updates in a single pass over the log during the undo 
pass of restart recovery, a list containing the LSNs of the next log records to be processed for 
each transaction being undone is constructed. When a log record is processed, the Prev-LSN 
(or Undo-Next-LSN, in the case of a CLR) is entered in the list as the next LSN of the log 
record to be processed. The next log record to be processed will be the log record with the 
maximum LSN on this list. 
 
The following example shows how the aborted transactions are rolled back during restart 
recovery, and how the restart recovery is resumed in case of the system fails during the restart 
recovery.  
 
Example 1. Assume that during the normal processing the stable log contains the following 
log records.  
 
         LSN           Log records 
          
           10            <T1, begin> 
           20            <T1, delete, Q, 1r , 10> 
           30            <T2, begin> 
           40            <T1, insert, Q, 2r , 20> 
           50            <T2, insert, R, 3r , 30> 
           60            <T1, split, P, Q, Q´, M , u , ´u , λ , V, 40>             
           70            <T2, delete, R, 4r , 50> 
           80            <T1, insert, Q´, 5r , 60> 
 
Assume that after installing the log record <T1, insert, Q´, 5r , 60> in the log, the system fails. 
When the system is up again, all forward-rolling transactions are aborted and rolled back and 
the rollback of all backward-rolling transactions is completed. The compensation log records 
generated during the undo pass are as follows.     
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           90            <T1, abort, 80> 
           100          <T1, undo-insert, Q´, 5r , 60> 
           110          <T2, abort, 70> 
           120          <T2, undo-delete, R, 4r , 50> 
           130          <T2, undo-insert, R, 3r , 30> 
           140          <T1, undo-insert, Q, 2r , 20> 
 
Now assume that the system fails again during the restart recovery after installing the 
generated compensation log record <T1, undo-insert, P, 2r , 20>. When the system is up 
again, the restart recovery is resumed and the following compensation log records are 
generated.       
 
           150           <T2, rollback-completed>      
           160           <T1, undo-delete, Q, 1r , 10> 
           170           <T1, rollback-completed>.    
 
Theorem 8. Let H be a history of forward-rolling, committed, backward-rolling and rolled-
back transactions that can be run on database D1 and let B1 be a structurally consistent and 
balanced B±tree with db(B1) = D1. Further let H´ be an implementation of H on B1 using the 
above algorithms and let L be the sequence of log records written by the operations in H´. 
Given the prefix L1 of L stored in the stable log and the (possibly structurally inconsistent) 
disk version B2 of the B±tree at the time H´ has been run on B1, the redo pass of the ARIES 
algorithm will produce a structurally consistent and balanced B±tree B3, where db(B3) is the 
database produced by running on D1 a prefix H1 of H that contains all the database operations 
logged in L1. Moreover, the undo pass of ARIES will generate a string γ ´ of B±tree 
operations that implements some completion string for H1. 
 
Proof. The way in which updates and structure modifications are generated guarantees that 
the log records generated by each transaction T are written to the log in the order in which the 
corresponding operations appear in T. As leaf-page updates and structure modifications are 
protected by X latches,  the log records for the updates and modifications on each page P 
appear in the log in the order in which the corresponding operations appear in H. Thus, given 
any prefix L1 of the log L, the redo pass of the ARIES algorithm will produce the B±tree that 
is the result of running some prefix of H´ on B1. By Theorem 6, B1 is structurally consistent 
and balanced. The rest of the Theorem follows from Theorem 7.  ! 
 
Conclusion 
 
Tree-structure modifications can limit the degree of concurrency and complicate the restart 
recovery. We introduced new B±tree algorithms in which tree-structure modifications are 
handled adequately. In our B±tree algorithms, tree-structure modifications are executed as 
atomic actions. Hence, a tree-structure modification which is executed to completion will 
never be undone regardless of the outcome of the transaction that triggered such tree-structure 
modification. Structure modifications are protected by X latches that are held for the duration 
of the structure modification. In our B±tree algorithms, each structure modification X-latches 
three pages at most simultaneously. This is an improvement over the algorithms presented in 
[1], [16], where structure modifications are performed unnecessarily or the whole search path 
is X-latched at once. In our B±tree algorithms, structure modifications can run concurrently 
with leaf-page updates as well as other structure modifications. This is in contrast to [2], [3], 
[4], where structure modifications are effectively serialized by the use of “tree latches”, in 
order to guarantee that logical undo operations always see a structurally consistent tree. A 
(leaf) page can contain uncommitted updates by several transactions, and uncommitted 
updates by one transaction can migrate to another page due to structure modifications 
triggered by other concurrent transactions. All our algorithms work with the steal and no-
force buffering policies [1] and with the fine-granularity (record-level) locking protocol [3], 
[4].   
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